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In the classical model of molecular adaptation, a favored allele derives from a single mutational origin. This ignores that
beneficial alleles can enter a population recurrently, either by mutation or migration, during the selective phase. In this case,
descendants of several of these independent origins may contribute to the fixation. As a consequence, all ancestral hap-
lotypes that are linked to any of these copies will be retained in the population, affecting the pattern of a selective sweep on
linked neutral variation. In this study, we use analytical calculations based on coalescent theory and computer simulations
to analyze molecular adaptation from recurrent mutation or migration. Under the assumption of complete linkage, we
derive a robust analytical approximation for the number of ancestral haplotypes and their distribution in a sample from
the population. We find that so-called “soft sweeps,” where multiple ancestral haplotypes appear in a sample, are likely for

biologically realistic values of mutation or migration rates.

Introduction

When a beneficial allele rises to fixation in a popu-
lation, it erases genetic variation in a stretch of DNA that
is linked to it. This phenomenon is called “genetic hitchhik-
ing” or a “selective sweep” and was first described by
Maynard Smith and Haigh (1974). In the classical scenario
for such an adaptive substitution, the beneficial allele arises
in the population as a single new mutation and then
increases to fixation under a constant selection pressure.
Under this scenario, genetic variation in parts of the genome
that are tightly linked to the selected site is lost and will only
be recovered by new mutation. Ancestral variation, that is,
genetic variation that has been present in the population
prior to the selective phase, is only maintained if recombi-
nation during the selective phase breaks the association be-
tween the study locus and the selected site. The resulting
pattern of a selective sweep, a valley of reduced variation
around the target of selection, has been described in
some detail and is well understood (e.g., Kaplan, Hudson,
and Langley 1989; Stephan, Wiehe, and Lenz 1992;
Barton 1995; Durett and Schweinsberg 2004; Etheridge,
Pfaffelhuber, and Wakolbinger 2005).

There is, however, a second scenario as to how ances-
tral variation can be maintained in the face of positive se-
lection, namely, if an adaptive substitution involves
multiple copies of the same beneficial allele. This can hap-
pen in the following two ways. If adaptation occurs from
the standing genetic variation, a large number of copies
of the beneficial allele may be initially present. Fixation
of the allele may then involve descendants of more than
one of these copies. Alternatively, a beneficial allele can
enter the population recurrently by mutation or migration
during the selective phase. Again, descendants of several
of these independent origins may contribute to the fixation
of the allele. In both cases, ancestral haplotypes that are
linked to any of these copies will be retained in the popu-
lation. Clearly, this would affect the pattern of a selective
sweep on linked DNA variation. We call selective sweeps
that involve (descendants of) more than one copy of the
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selected allele, “soft sweeps.” They are distinguished from
the classical “hard sweeps” where ancestral variation is
maintained only through recombination.

Selective sweeps from the standing genetic variation
have been described in three recent publications. Hermisson
and Pennings (2005) derive the probability for a soft sweep
for adaptation from the standing genetic variation. Innan
and Kim (2004) and Przeworski, Coop, and Wall (2005)
describe the effect of an adaptive substitution from the
standing variation on summary statistics for DNA variation,
assuming that the allele had been neutral prior to the onset
of positive selection. There is then the chance that ancestral
variation—due to mutation during this first time period—is
retained in the population even without recombination.
However, as long as there is only a single origin of the
beneficial allele (as assumed by Innan and Kim [2004]
and Przeworski, Coop, and Wall [2005]), the effect is nec-
essarily limited. Other than in the case of recombination, the
surviving ancestral haplotypes are not independent but
identical by descent.

In this study, we focus on selective sweeps from a ben-
eficial allele that enters the population recurrently by mu-
tation or migration. We derive the probability for a soft
sweep, given the mutation/migration rate and the selec-
tion coefficient of the beneficial allele. More generally,
we determine the expected number of independent ancestral
haplotypes and their frequency distribution in a sample
from a locus that is tightly linked to the selected site.
Our results show that soft sweeps are likely under biolog-
ically realistic conditions.

Model and Methods
Model and Definitions

We study a single locus under selection in a haploid
population of effective size N,. For most of this study, only
two alleles (or classes of alleles) at this locus are considered,
an ancestral allele » and a new beneficial variant B with
fitness advantage s. In general, we will allow s to depend
on time and/or on the frequency of the beneficial allele. The
B allele enters the population through either recurrent
mutation at rate ¥ or migration at rate m (where m is the
per generation probability for an individual to be replaced
by a migrant). We consider mutation and migration
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Fic. 1.—Soft selective sweep from recurrent mutation in a schematic Wright-Fisher model. Circles represent individuals, the different patterns
indicate independent ancestral haplotypes. The beneficial allele B (dark gray individuals) substitutes the ancestral b allele (white). The B allele arises
three times by independent mutation; individuals then change their color from white to gray but keep their haplotype pattern. The “zoom” into a single
time step shows how reproduction and mutation are separated. Directly after fixation (time 0), we take a sample of size three (K, L, M) that contains
descendants from the first (L, M) and the second (K) mutational origins of B. The right panel shows DNA fragments of the sampled individuals. The
vertical ticks represent neutral polymorphisms. Individuals L and M share a recent ancestor and are identical in this region of the genome. Individual K

carries a different ancestral haplotype.

separately. Back mutation or migration is ignored. We de-
fine population-level parameters for selection, mutation,
and migration as o0 = 2N,s, ® = 2N u, and M = 2N m.
Every generation consists of reproduction (including fertility
selection), followed by mutation or migration, see figure 1.

Assume that the population is originally monomorphic
for the ancestral allele b. After successful substitution, all
individuals carry the B allele. Because mutation or migra-
tion is recurrent, this substitution may involve several cop-
ies of the B allele with independent origins in the sense that
they do not trace back to a single ancestor in the study pop-
ulation. Independent copies are linked to independent ge-
netic backgrounds that are randomly drawn either from
the study population prior to the substitution or from the
source population of migrants. We call these independent
genetic backgrounds at the selected locus “independent an-
cestral haplotypes,” or “ancestral haplotypes” for short.
Note that with this definition differences due to new muta-
tions or recombination events (i.e., events after the first ben-
eficial mutation or migration event) are not considered.
Note also that “independent” does not necessarily mean
“different” because it includes the possibility that the same
haplotype is drawn multiple times.

Suppose that we take a sample from the selected locus
or from a tightly linked fragment (so that no recombination
has taken place between this fragment and the selected lo-
cus) some time after fixation of the B allele. If there is more
than one ancestral haplotype in the sample, we call this a soft
selective sweep from recurrent mutation or migration. The
opposite case (only one ancestral haplotype) is called a hard
sweep. Note that soft and hard sweeps can be defined either
with respect to a sample or with respect to the population. A
soft sweep in a population means that there are several an-
cestral halpotypes at the selected locus in the population. In
this paper, we usually consider samples.

Simulations

We checked all analytical results by forward-in-time
computer simulations. For this, a Wright-Fisher model with
N, = 500,000 haploid individuals is simulated. Each run
starts with a population that is monomorphic for the ances-
tral b allele. Reproduction is simulated by fitness-weighted
multinomial sampling. After reproduction, every b individ-
ual has probability « to mutate to B. In the migration model,
every individual, independent of its genotype, is replaced
by a migrant with probability m. Descendants of mutants
and migrants are followed separately; at the observation
time their frequencies are determined in a population sam-
ple. Data points are averages over 100,000 runs (10,000
runs for o = 100). The code is available on request.

Results

This section is organized in four parts. The first two
consider recurrent mutation. We start with a detailed deri-
vation for a sample of two, which is the simplest case. We
then use intuitive arguments to motivate our main result,
which is the frequency distribution of ancestral haplotypes
for a sample of size n. All formal derivations for this general
case are given in the Supplementary Material online. In the
third part, we show how these results apply to the recurrent
migration case. Finally, we briefly discuss several general-
izations of the model.

Soft Sweeps from Recurrent Mutation in a Sample of
Size Two

Consider a sample of size two that is taken from a pop-
ulation at some time f,,, measured from the time of fixa-
tion of the beneficial B allele. Initially, we will assume that
sampling occurs directly at fixation, that is, 7,ps = 0. We
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want to derive the probability Py, that the two copies
of the B allele in the sample are not identical by descent,
that is, the probability of a soft selective sweep. We use a
coalescent framework and define t as the time in the past
before the sample was taken, that is, T = O for r = 7, and if
T, > 14, then 1, is further back in the past than t;.

Let x; be the fraction of the population that carries the
beneficial allele B at time t. We follow the fate of the two
lineages backward in time until they either coalesce or one
of the two mutates. P > is the probability that mutation
happens before coalescence; we denote the alternative pos-
sibility that the lines coalesce before one of the two mutates
as Phard,2 =1- Psoft,2~

Let Pgoa12(7) be the coalescence probability in gener-
ation T and P, »(7) the probability that one of the two lin-
eages has mutated and had a b ancestor in generation 1. We
can then express Ppago as

o T—1
Phard‘Z = <Z ( coalZ H mulZ Pcoal,Z (l))>>

(1)

where the empty product, H?:p is defined to be 1. The
product is the probability that neither mutation nor coales-
cence has happened until generation 1. (...), denotes the
expectation over the stochastic path {x.}. of the frequency
x. of B.

To calculate P>, it is convenient to separate re-
production (and therefore coalescence) from mutation by
introducing an artificial intermediate generation after repro-
duction but before mutation: Using the backward-in-time
notation, individuals of generation 1T reproduce to form
generation T — 2, and the individuals in this intermediate
generation can mutate or not to form t — 1 (see fig. 1).
Ignoring back mutation from B to b, the number of B alleles
in the (t — 1)th generation is given by

X = (l — xrf%)u + Xt (2)

in which the first term on the right-hand side is the new
mutants and the second term is the B’s that were already
there. For a single B lineage, the probability that it is a mu-

tant is
P () = ( (1 —xT,%>u _a —xt,l)u7 3)

11— xt,%) utx, (1 —u)xey

where x, 1=+ (from eq. 2). Thus, the probability for
(at least) one mutation in a sample of two is Ppy2=
2P a1 — Pmut 1- If no mutation has happened, coalescence
happens with rate 1/(Nx;). The exact coalescence probabil-
ity in generation t therefore is

1 - PmuL.Z(T)

Pcoal,2(r) = N X

(4)

In a sufficiently large population, and for small values
of u, we can safely ignore the occurrence of several events

in a single generation. Formally, this is done by ignoring
terms of order of u/(N,x) and u*. If we can also ignore
terms of order s/(N,x), we can further set X;_; =~ X
We then obtain

Ol —x,) 1
N Pcoa ~
Nx o PO

P2 (T)% (5)

for the probability of mutation and coalescence. Using equa-
tion (5) in equation (1), Pp,qo can now be expressed as

<Z{N i(:-

1+®(1 — X;

el

=1 Ti=1

(S

=1

)
+<i{f3;ﬁ(l—”‘?vii,‘x’”)}ll
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(6)

where the sum in the second line is the probability that the
two lineages eventually either coalesce or mutate, which is
1 for every realization of the path {x.}.. The expectation in
the last line of equation (6) has a simple interpretation. It is
the average time, 7', in generations until either coalescence
or mutation happens. T, certainly lies between 0 and Ty,
the average fixation time for the beneficial allele in the pop-
ulation. This gives an upper and lower bound for Pj,.q4 as

1

l+®

1 1 O Ty
<P, <— |1+ )
(4@ = Pwi2 Sy ®<1 N, ) )
Equivalently,
® Tiix
— >P.,>— (1= )
1+®—PS"“*2—1+®<1 Ne> )

This result has several important implications. First, none of
the details of the stochastic process that underlies the path
{x.} enters into the estimate for Py,q.2 OF Py 2. In fact, the
value of Tjy in one of the bounds is the only quantity that
depends on this process—and thus on the selection coeffi-
cient. Second, we see that the estimate gets very precise
(upper and lower bounds converge) if T4,/N, < 1. This
is easily fulfilled for strong selection. In this case, Py
and P> depend only on ® but are entirely independent
of all selection parameters.

Finally, one should note that the derivation does not
depend on the assumption that the sample is taken directly
after fixation. Assume, instead, that the population is sam-
pled some time ., after fixation. In that case T§, in equa-
tions (7) and (8) has to be replaced by the expected age of



the oldest B allele that is found in the population at the time
of observation. The approximation will be good as long
as (tops T Thx)/N. < 1. If the sample is taken before full
fixation, the above estimates (7) and (8) hold if we condi-
tion on a sample that is monomorphic for B.

To assess the quality of the bounds for P,y > in equa-
tion (8), we need an estimate of Ty,. For a single copy of
a beneficial allele that rises to fixation under a constant se-
lection pressure oo = 2N,s, a precise estimate of the fixation
time is Tj./N, =~ 4 log (2)/o. (Hermisson and Pennings
2005). For ® <« o, the same approximation holds also
for fixation under recurrent mutation. With this estimate
for Ty, both bounds deviate by <5% for o > 500. Figure
2 confirms that simulation data fall between the predicted
bounds. Only for extremely strong selection (s =~ 1), some
deviations appear (data not shown). The reason is that the
approximation x,;_; =~ x. that we have used in the derivation
is no longer accurate in this case.

Soft Sweeps from Recurrent Mutation in
Larger Samples

Consider now a sample of size n taken from the pop-
ulation at some time 7. If sampling occurs before fixation,
we condition on samples that are monomorphic for the B
allele. We are interested in the number and the frequency
distribution of ancestral haplotypes in the sample.

If there are k ancestors of the sample that are associated
with a B allele at time t, the probability for mutation and
coalescence at this time is approximately

kO(1 — x,)
2N,x, '

_k(k—1)
coal k 2Next )

P mutk (9)
where x; is the frequency of the beneficial allele. Using
these relations, we can extend the above approach and cal-
culate upper and lower bounds for the probability of a soft
selective sweep. These derivations are given in the Supple-
mentary Material online. Below, we focus on just one of the
bounds where a more intuitive derivation is possible.

We need two steps for our argument. First, note that
the leading order approximation for a sample of size two
(i.e., the lower bound in eq. 7 and the upper bound in
eq. 8) is equivalent to an approximation of the mutation
probability P.». In fact, equation (6) reduces to 1/(1 +
®) if we ignore the factor (1 — x.) in the numerator of P, »
in equation (5). We can apply the same approximation to
P in equation (9) and justify this step as follows: the
denominator of P, guarantees that mutation is only
likely if x; is small. In this case, however, (1 — x;) = 1.

Secondly, without the (1 — x;) term, we see that the
coalescence and mutation rates in equation (9) are both pro-
portional to (1/x;). If we are only interested in the order of
events in the genealogy of the sample (and not in the exact
times at which coalescence and mutation happen), only the
relative rates matter and we can ignore the x, dependence
altogether (see the Supplementary Material online for a for-
mal derivation). The result is that the problem is now equiv-
alent to a standard neutral coalescent in a population of
constant size where lines are stopped at mutations (also
called “coalescent with killings,” Durett 2002). This prob-
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F1G. 2.—The probability of a soft selective sweep in a sample of size
two, taken directly after fixation. The horizontal line represents the first-
order approximation (upper bound, eq. 8) and the curved line the second-
order approximation (lower bound, eq. 8). Dots are simulation results;
black dots are for mutation (® = 0.4) and the gray dots are for migration
M = 04).

lem is long known and can be exactly solved (e.g., Ewens
2004, p. 335ff). In particular, the expected number of hap-
lotypes and their frequency distribution are given by the
Ewens sampling formula: given the mutation rate ® for
the B allele, the probability to find & haplotypes, occurring

ny,...,n; times in a sample of size n= Zi n; is

n! c}
Pr(n,... Q)= .
e e CE T )

(10)

Using this result for k = 1 and n; = n, we obtain an upper
bound for the probability of a soft sweep as

Psnﬂ,n § 1 - Pr(n|n7®)
n—1 .
l 2
= p— = +
1-]l;5g=a©+ 0O,

i=1

(11)

where a,,= %4—%4— .. +%. Equation (11) reduces to (8) in the
case of n = 2. The “<” expresses the fact that we have
overestimated the mutation probability by ignoring the fac-
tor (1 — x;) in Py The marginal distributions for the
number of haplotypes £ and the distribution for fixed &
can also be given

@kS(k)
Pr(k|n. ©) = OO+1)--- Z@ +n—1) (12)
where S,(,k) is Stirling’s number of the first kind and
Pr(n;...mlk,n,®) = i (13)

k!l’ll s nkS;k).

In figures 3—5 we compare the estimates from equa-
tions (11)—(13) with simulation data for samples that are
drawn at the time of fixation of the B allele. As can be seen
from figures 3 and 5, the predictions are good for strong
selection. For oo = 100, the simulation data deviate more
strongly. The same effect is seen if the sample is taken a long
time after fixation. The reason is the same as for a sample
of size two: if the time from the first origin of the allele to
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Fi6. 3.—The probability of a soft sweep in samples of varying size n,
taken directly after fixation. The horizontal lines represent the first-order
approximation (upper bound, eq. 11). The dots are simulation results.
Black dots are for mutation (® = 0.4) and gray for migration (M = 0.4).

the observation of the sample is very long, the small error
that we have made by ignoring the factor (1 — x;) in the
mutation probability accumulates over many generations.
In a time-forward picture, this corresponds to the fact that
ancestral haplotypes with a low frequency will slowly drift
out of the population. Figure 5 shows that the distribution of
the remaining haplotypes then becomes more uniform, as is
predicted by Kimura (1955). Figure 3 also shows that the
approximation works best for small samples sizes (see also
the Supplementary Material online).

Equation (11) and figure 4 show that the probability of
a soft sweep depends strongly on ®, the recurrent mutation
rate of the beneficial allele on the population level. For low
® < 0.01, soft selective sweeps from recurrent mutation are
rare. For ® between 0.01 and 0.02 (depending on sample
size), they will appear in about 5% of all cases. 0.01 < © <
1 is the transitional range where both soft and hard sweeps
will be found. For high mutation rates with ® > 1, almost
all selective sweeps will be soft (see fig. 4). Equation (11)
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FiG. 4—The probability of finding 1, 2, 3, 4, or > 4 ancestral hap-
lotypes (different mutational origins of the B allele) in a sample of 20 for
different ® values. For each ® value, we show the simulation results on the
right (marked S) and the prediction left (according to eq. 12, marked P).
The simulations use oo = 10,000, the population is sampled directly after
fixation.
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Fic. 5.—Haplotype frequency spectrum: the probability for a major
ancestral haplotype with frequency 5 out of 10, 6 out of 10, etc., given that
there are two haplotypes in the sample of 10. We show from left to right: o0 =
100; o = 1,000; o = 10,000; prediction according to equation (13). ® = 0.1

shows that there is a logarithmic dependence on the sample
size: Pyopn =~ a,-10 =~ (y + log(n — 1)) (with Euler’s y =
0.577...), which can also be seen in figure 3.

To leading order, the probability of a soft selective
sweep is independent of the selection strength. However,
to second order, and as can be seen in figure 3, Py, in-
creases with selection strength. In other words, the tendency
to maintain ancestral genetic variation in the face of positive
selection increases with stronger selection. This is in strong
contrast to the maintenance of variation due to recombina-
tion. As explained above, the reason for this effect is the
longer fixation time of weakly beneficial alleles. If we sam-
ple at a fixed time after the start of the substitution process,
the increase disappears (see also the Supplementary Mate-
rial online).

Finally, we note that the results are slightly different
when we consider the entire population instead of a sample.
As we reported previously, the probability for a soft sweep
on the whole population level increases with selection
strength (see Hermisson and Pennings 2005, fig. 6). This
holds true even if the sample is taken at a fixed time after
the start of the substitution process (results not shown). This
indicates that under strong selection more alleles are main-
tained in a population, which afterward could be picked up
by a new selection pressure. Note that our analytical results
cannot be extended to the entire population because the ap-
proach depends on the assumption that multiple events in
a single generation and coalescent events with multiple
mergers can be ignored.

Migration

Instead of new mutation, a beneficial allele can also
enter a population through recurrent migration. We con-
sider the following scenario. A population is split into
two subpopulations. At the B locus, the subpopulation in
the first deme is fixed for the B allele since a long time
ago; the second subpopulation is initially fixed for the
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Fic. 6.—Effect of variance in the fitness of B alleles on the number of
ancestral haplotypes in a sample. Beneficial mutation produces two kinds
of B alleles, B, with equal probability. The scaled selection coefficients
are o+ =(1=D)a, where the mean selection strength is =10, 000. A sam-
ple of size 20 is taken at fixation of the B alleles (i.e., when the ancestral
b allele is lost). Simulation results are shown for three different ® values
and values of D ranging from 0 (homogeneous fitness) to 0.2 (correspond-
ing to a 50% larger o relative to o).

b allele. We assume that gene flow at the B locus into the
second subpopulation was inhibited for a long time, either
because of geographical isolation or because of selection
against the B allele in the second deme. Now, however, both
populations are linked through weak migration, and the B
allele is beneficial in both demes. We assume that a muta-
tional origin of the B allele in the second subpopulation is
unlikely and can be ignored. Thus, adaptation in the second
deme will only occur from migrants.

Migration is modeled by a fixed probability m for ev-
ery individual to be replaced by a migrant. For a (fixed)
population size of N, in the second deme, N.m is then
the average number of successful migrants that arrive in that
deme per generation. We ignore the possibility that over the
relevant time scale (i.e., the typical fixation time of B), a lin-
eage sampled in the second deme migrates to the first deme
and back to the second deme. As a consequence, we can
entirely focus on the evolutionary process in the second
deme and treat the first deme as a reservoir of independent
B haplotypes that enter the second deme at a constant rate.

We are interested in the expected number of different
B haplotypes and their frequency distribution in a sample
from the second deme. As in the mutation model, we sep-
arate the two stages that produce a new generation and in-
troduce an intermediate step after reproduction but before
migration. Using the backward-in-time notation, individu-
als of generation t reproduce to form generation 1 — % and
the individuals in this intermediate generation can be re-
placed or not by migrants to form t — 1. A migrant replaces
a random resident individual, independent of the resident’s
genotype. We can thus write x,_; in terms of x__1 as

=3

X1 :m+xr—%(1 _m)7 (14)

where the last term represents the resident B’s that are
not replaced by migrants. For a B lineage, the probability
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that it has migrated and has an ancestor in deme one in gen-
eration T is
m m
Pmig,l (T> =7~~~ —.
m+tx i (1—m) x_

(15)
Ignoring the probability that multiple events happen in one
generation, and using x._; =~ x, the probability for migra-
tion, backward in time, for k£ ancestors at time T is

kM
2N,x,

where M = 2N,m. The probability for migration lacks the
(1 — x;) factor of the mutation probability (eq. 9). While
only mutations from b to B introduce a new ancestral
haplotype associated with the B allele, every migration, re-
placing either a b individual or a B individual in the sub-
population in deme two, will add a new B haplotype.

We thus see that the migration and coalescence prob-
abilities are strictly proportional; their relative rates do not
depend on the frequency x; of the B allele. We can therefore
directly map the coalescent to a neutral coalescent. The prob-
lem is fully solved by the Ewens sampling formula (egs.
10-13), with O replaced by M, for arbitrary values of the
selection coefficient. The simulation data in figures 2 and
3 show that this estimate is highly accurate. Our results
can also be applied if the origin of the B allele in the first
deme is more recent (less than 2N, generations ago). In this
case, however, there is a higher chance that different B
haplotypes have a common origin and are thus similar or
even identical.

(16)

Pmig.k ~

Generalizations of the Model

We have derived our results under a number of sim-
plifying assumptions mainly for the clarity of the presenta-
tion. As it turns out, several of these assumptions can be
significantly relaxed without changing our results. In this
section, we show that the sampling distribution of ancestral
haplotypes follows the Ewens sampling scheme as a good
first-order approximation under a wide range of biological
scenarios.

Back Mutations

Inclusion of back mutations at rate v into the model
brings three small changes. First, there is a small additional
term proportional to uv added to the mutation probability
Pt in the coalescent. Second, there is a slight chance that
multiple mutations from B to b and back occur on a single
line of descent. On the time scales considered here, both
these effects can be safely ignored even for high back-
mutation rates. Third, back mutation also changes the ex-
pected frequency x; of the beneficial allele B. In particular,
with high v, B may never reach full fixation. However, as
long as we condition on samples that are monomorphic for
B, this does not affect our results, which do not depend on
the stochastic path {x.}..

Changing Population Size

In the migration model, we can allow arbitrary
changes in the effective population size N, of the population
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in the second deme. To maintain our results, we only need
to keep the average number of successful immigrants, N.m
(and thus M = 2N,m), fixed. In generations with small N,,
this is compensated by a higher probability m for each in-
dividual to be replaced by a migrant. (For recurrent muta-
tion, a similar assumption of a constant ® despite changing
N, does not seem to be meaningful.) An important limiting
case is that the second deme is initially altogether empty
and only colonized by descendants of immigrants that ap-
pear at a constant rate. We stress that this is a purely demo-
graphic scenario without any positive selection that leads to
the same expected pattern of ancestral haplotypes at the
study locus. In contrast to selection, however, the pattern
should be genome wide in this case.

Mutation and Migration

Without any additional problem, we can combine mu-
tation and migration into a single model. To leading order,
the sampling distribution of ancestral haplotypes is then still
given by the Ewens equations (10)—(13), with ® replaced
by ® + M. The leading correction terms are the same as
above and depend on © only.

Adaptation from Standing Genetic Variation

Because our approximations do not depend on the path,
{x:}, they are not affected by changes of the selection pres-
sure s as a function of time or of frequency, as long as the
fixation time does not become too long. In particular, s
may also change its sign during the course of the substitution
process. This will be the case if the allele adapts from the
standing genetic variation. As in the purely beneficial
case, the Ewens approximation will be accurate as long as
(Thix t tops) <K N,. This is always the case if selection (either
positive ornegative)is strong enough. Note that the sampling
distribution counts the numbers of independent haplotypes
(independent origins in Hermisson and Pennings 2005). It
does not count the number of descendants of all B copies that
segregated in the population at the start of positive selection
because the latter may still be identical by descent.

Diploidy and Dominance

Formally, our derivations above apply for a haploid
model or for a diploid model with complete dominance.
In these two cases, every B allele in a parent generation
has the same expected number of offspring. In a diploid
model with dominance coefficient 4 < 1, the expected num-
ber of offspring of a B allele depends on whether it comes
from a homozygote BB or a heterozygote Bb individual.
This increases the variance in offspring number relative
to the haploid case and therefore also the coalescence rate.
As shown in the Supplementary Material online, however,
the effect is very small, of the order s2, and can usually be
ignored. Dominance further changes the expected fre-
quency path {x.}. of the beneficial allele. Because this does
not affect our results, they also apply to randomly mating
diploids with an arbitrary level of dominance.

Variance in the Fitness Effects

Until now, we have assumed that all beneficial B
alleles are of a single type and have the same fitness

advantage. If B corresponds to a class of (more of less)
physiologically equivalent alleles rather than to a unique
molecular genotype, this may not be realistic. It is therefore
important to check the stability of our results under varia-
tions in fitness among the beneficial alleles. With this aim,
we ran additional simulations where we split the B alleles
into two classes By and B_. New mutations are assigned
with equal probability to either of these classes. B~ alleles
have scaled selection coefficients o+ =a(1£D). With this
definition, D is the coefficient of variation of the distribu-
tion of o values.

Figure 6 shows that for low @®, there is no visible dif-
ference in the number of ancestral haplotypes relative to the
homogeneous case (D = 0), even for a large variance
among the selection coefficients. For higher @, the proba-
bility of a soft sweep is significantly reduced if D gets large.
Note, however, that soft sweeps are very likely in this pa-
rameter range anyway. For the frequency spectrum, the pre-
dictions from the homogeneous case are even more stable.
We find no visible deviation from the values predicted by
equation (13) even for D = 0.2 (figure S1 in the Supple-
mentary Material online).

Discussion

How much genetic variation can be maintained in
a population in the face of positive selection? Ever since
the work of Maynard Smith and Haigh (1974), we know
that positive selection removes genetic variation from a pop-
ulation. This has important consequences. First, the charac-
teristic valleys of reduced variation around a selected site
can be used to detect loci that underlie adaptation (e.g.,
Harr, Kauer, and Schlétterer 2002; Storz, Payseur, and
Nachman 2004; Haddrill et al. 2005; Ometto et al.
2005). Second, if positive selection acts recurrently along
the chromosome, it may be selection rather than genetic
drift that controls the level of genetic variation in a popu-
lation. This was formalized in the theory of genetic draft by
Gillespie (1991). Positive selection and linkage may also
limit the rate of the future adaptive process (Barton 1995).

The classical view is that selection erases all ancestral
variation (variation that existed before the onset of selec-
tion) unless recombination during the substitution process
breaks the linkage between the selected site and its genetic
background. The point of this paper is that ancestral vari-
ation can also be retained if the favorable allele occurs re-
currently and if several independent origins contribute to
the adaptive substitution. Positive selection then results
in what we call a soft selective sweep. Because every ben-
eficial mutation is eventually recurrent, the crucial question
is for which mutation rate will recurrent mutation result in
soft sweeps and thus affect the standard results of genetic
hitchhiking? From our results, we can answer this question
as follows. If ® = 2N, u is the population-level mutation
rate of the beneficial allele (or allelic class), then

e For ® < 0.01, soft sweeps are rare (less than 5%) even in
a large sample. In this parameter range, the classical re-
sults on hitchhiking and selective sweeps hold as a good
approximation.

e For ® > 0.01, soft sweeps start to play a role and will
be observable for recent substitutions. In a transitional



range, 0.01 < ® < 1, soft sweeps coexist with classical
hard sweeps. For ® > 1, almost all adaptive substitutions
will result in soft sweeps.

e Analogous results hold if beneficial alleles are introduced
by recurrent migration instead of mutation. Other param-
eters such as selection strength, dominance, etc. play
only a minor role.

e Our results show much more than the probability of a soft
sweep: for a given ®, the expected number and distribu-
tion of ancestral haplotypes in a sample follow approx-
imately the Ewens sampling formula.

The relatively low values for ® that are necessary to
obtain soft sweeps and the independence of the selection
strength may come as a surprise. After all, if selection is
strong adaptation is fast and the time for recurrent mutation
limited. In fact, input of neutral mutations during the selec-
tive phase can often be neglected, even if their combined
mutation rate on a DNA fragment is high (® =~ 10 typical
for Drosophila species). So why is the same not true for
beneficial mutations that are much rarer? Here, it is impor-
tant to note that the neutral mutations can be ignored be-
cause they are unlikely to be seen in a sample, not
because they are unlikely to happen in the population dur-
ing the selective phase. Also for beneficial mutations, mul-
tiple origins during the substitution process are likely, even
for quite low values of ®. And because of their positive
fitness, they have a much higher probability to survive
stochastic loss and to make it into the sample.

In a forward-in-time picture, this can be estimated as
follows. For a beneficial allele with selective advantage o, =
2N,s, the average fixation time is T, =~ 4N, log(o)/o. The
average number of mutations that occur in this time is 20N,
log(a)/at. To get an idea of this quantity, if ® = 0.01, N, =
2 ><-106, and o = 1,000, then Ty, is about 55,000 gener-
ations, and the mutation will occur about 276 times during
the fixation process of the first mutation. For neutral muta-
tions, the probability for a given mutation to occur in a sam-
ple of size n is about n/N, (for a star-like phylogeny). We
thus obtain a probability of 2n® log(a)/a for recurrent neu-
tral mutations to enter the sample, which strongly decreases
with o. In contrast, the probability for beneficial mutations
to escape stochastic loss and to appear in the sample is
proportional to the selection coefficient s (approximately
2s(1 — x) if x is the frequency of beneficial alleles that al-
ready segregate in the population). As a result, the depen-
dence on s of the probability Pg.q, to observe recurrent
beneficial mutations in a sample will largely cancel.

The fact that Py, and, more generally, the number
and distribution of ancestral haplotypes are independent of
o is only one aspect of the remarkable robustness of these
estimates. Under the sole assumption that the substitution
was relatively fast and recent, the approximations are inde-
pendent of most details of the adaptive process. They are
valid whether beneficial mutations arise through mutation
or migration or both, in haploids or diploids, for arbitrary
patterns of time-dependent or frequency-dependent selec-
tion, any level of dominance, and even for moderate variance
in the selection coefficient among the beneficial alleles. Be-
cause of this generality, there should be a realistic chance that
patterns associated with soft sweeps can be found in data.

Adaptation from Recurrent Mutation or Migration 1083

Where should we expect soft selective sweeps due to
multiple origins of the beneficial allele in nature? Two fac-
tors contribute to @, which is the crucial parameter: soft
selective sweeps should be expected if either the effective
population size N, or the allelic mutation rate u is high. For
example, in African Drosophila melanogaster with an es-
timated haploid size N, =~ 2 ><-106, Watterson’s estimator
for ® per site was measured to be @y ~ 0.013 (Ometto
et al. 2005). This translates into a Pg,g, of ~5%, if only
mutation at a single site produces the beneficial allele.
One should note, however, that Watterson’s estimator is
strongly affected by past demographic events. If the pop-
ulation has experienced recent strong growth, this estimator
will severely underestimate the real ® (which depends on
the inbreeding effective population size at the time of the
adaptation rather than on the variance effective size). For
humans, in particular, it is questionable whether the
often-cited low values for ®y, =~ 0.001 (or N, = 10,000)
are relevant for recent adaptations (e.g., to agriculture or
diseases). A second scenario where soft selective sweeps
from recurrent mutation are likely are adaptations with a
high allelic mutation rate, such as adaptive loss-of-function
mutations. Finally, situations where beneficial alleles may
have been introduced into a population by recurrent migra-
tion at a low, but steady rate are easy to imagine.

In human population genetic data, quite a few alleles
are known that have risen in frequency due to positive se-
lection and are associated with different haplotypes. These
could be cases of soft sweeps from independent mutational
origin. Some of these alleles are indeed produced by loss-
of-function mutations (e.g., the FY-0 allele at the Duffy
locus, Hamblin and Rienzo [2000]; o and B thalassemia
mutations, Flint et al. [1993]) but others are not (e.g.,
HbS, which causes sickle cell anemia, Flint et al. [1993];
HbE, which causes a mild variant of [ thalassemia,
Antonarakis, Orkin, and Kazazian [1982]).

Schlenke and Begun (2005) found three immunity
genes in Drosophila simulans that show clear signs of soft
sweeps. The genes have extreme linkage disequilibrium val-
ues, in each case caused by two distinct haplotypes at inter-
mediate frequencies that have not recombined. In one case,
there is also a third invariant haplotype at low frequency.
Each of the haplotypes has little or no polymorphism, ruling
out the possibility of long-term balanced polymorphisms.
The authors also did simulations to rule out the possibility
that the patterns are caused by purely demographic scenarios
such as bottlenecks. However, the pattern that is found in
these three genes is perfectly compatible with soft sweeps.

Pathogens can have extremely high population sizes. It
may, therefore, not be surprising that evidence for soft
sweeps also comes from a recent study of Plasmodium fal-
ciparum, with an estimated population size of 10'°-10'2
per infected person (Roper et al. 2004). In this study, micro-
satellite variation in both pyrimethamine-resistant and sen-
sitive parasites was studied. The haplotype structure in the
data clearly suggests that the double-mutant dhfr allele
(with longer clearance times than the sensitive parasites)
in Africa has three independent mutational origins. The
triple-mutant allele (making the parasite almost resistant)
seems, however, to have only one origin (Roper et al.
2003). In some cases, for example in viruses, ® values
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may be so high that selective sweeps, at least for single
mutants, can never be detected. All sweeps would involve
alleles of many different origins, and there will be no visible
signature of selection.

An obvious next step to be taken is to add recombina-
tion to the model and study how soft sweeps affect patterns
of nucleotide variation at linked neutral loci. Also, more
realistic demographic scenarios still remain to be investi-
gated. Aspects that we have not addressed in this paper in-
clude changes in population size for the mutation case or
more complex population structures. In general, population
structure should make soft sweeps more likely. This is easy
to see from the extreme case, where subpopulations are
linked by very weak migration. If M is lower than O, it
is more likely that adaptation in each population will be
from its own mutational origin of the beneficial allele.
On the meta-population level this would result in a soft
sweep.

Supplementary Material

Supplementary figure S1 and other supplementary
materials are available at Molecular Biology and Evolution
online (http://www.mbe.oxfordjournals.org/).
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