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Four-State Quantum Chain as a Model of
Sequence Evolution
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A variety of selection-mutation models for DNA (or RNA) sequences, well
known in molecular evolution, can be translated into a model of coupled Ising
quantum chains. This correspondence is used to investigate the genetic variability
and error threshold behaviour in dependence of possible fitness landscapes. In
contrast to the two-state models treated hitherto, the model explicitly takes the
four-state nature of the nucleotide alphabet into account and allows for the
distinction of mutation rates for the different base substitutions, as given by
standard mutation schemes of molecular phylogeny. As a consequence of this
refined treatment, new phase diagrams for the error threshold behaviour are
obtained, with appearance of a novel phase in which the nucleotide ordering of
the wildtype sequence is only partially conserved. Explicit analytical and
numerical results are presented for evolution dynamics and equilibrium
behaviour in a number of accessible situations, such as quadratic fitness
landscapes and the Kimura 2 parameter mutation scheme.

KEY WORDS: Biological evolution; mutation; selection; error threshold;
quantum chain; mean-field model; phase transition.

1. INTRODUCTION

One prominent phenomenon in the theory of molecular evolution that has
also attracted considerable attention in statistical physics is the so-called
error threshold. It describes the breakdown of genetic order in mutation-
selection models for mutation rates surpassing a certain critical value. The
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prototype model for the description of the error threshold is Eigen's quasi-
species model in sequence space(7, 8) (which is effectively equivalent to a
coupled mutation-selection model in population genetics, cf. ref. 5), originally
designed for the description of prebiotic RNA evolution. However, the
threshold is supposed to be a phenomenon that should occur in a rather
general class of mutation-selection models.

In order to set up a mutation-selection model that is tractable by
analytical (or at least numerical) methods, severe simplifications of the
original biological situation seem to be indispensable. Analytical approaches
generally have to restrict to the treatment of infinitely large populations
and rather simple fitness functions, such as the sharply peaked landscape
of Eigens original model. Another common approximation, also used in
previous studies of the quasispecies model, amounts for the simplified
representation of genotypes as binary strings. In the context of molecular
evolutionary theory, this may be thought of as representing DNA or RNA
strands by sequences of purins and pyrimidins, hence with only two states
per site, neglecting the fact that genetic information is really given by a
four-letter alphabet. In this article, we present a four-state mutation-selec-
tion model which is capable to describe the full nucleotide alphabet and
incorporates the standard mutation schemes of molecular phylogeny. In
particular, the phase diagrams are discussed in detail which are more
polymorphic than for the two-state model. This shows that, for a full
understanding of the error threshold behaviour in molecular evolution,
investigations can not be restricted entirely to the study of two-state models.

One important step towards an understanding of the threshold phenom-
enon has been its identification with an equilibrium phase transition in
physics by the translation of a time-discrete version of the quasispecies model
into the transfer matrix of an anisotropic two-dimensional Ising model.(15)

This equivalence was further exploited to study various aspects of the error
threshold with methods from statistical physics.(16, 24, 11, 10, 18) It turns out,
however, that the anisotropy of that model is not so easy to handle and the
analysis of the relevant biological quantities (which correspond to certain
surface properties of the Ising model) remains an involved problem. Due to
the complications of the model, almost all results obtained so far are
approximate or numerical. The only exact result for the sharply peaked
landscape(12) has been worked out via a different analogy to a model of
directed polymers, using the specific properties of that very special fitness
landscape.

An alternative approach to the analysis of mutation-selection models
and the error threshold which avoids some of the problems of the aniso-
tropic Ising model has been brought up in refs. 2 and 27. Here, the starting
point on the biological side is a slightly changed model which describes the
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evolution of a population with overlapping generations in continuous time.
It turns out that, after a reformulation in tensor products, the two-state
version of this model is equivalent to the Hamiltonian of an Ising quantum
chain. Thereby, the change to continuous time in the biological description
corresponds to the anisotropic limit that connects the two-dimensional
Ising model and the quantum chain in physics (cf. ref. 14). The quantum
chain model is technically easier to handle, and exact results for two non-
trivial fitness landscapes, namely Onsager's landscape and the quadratic
fitness function, have been worked out.(2, 27)

Accordingly, we extend this latter approach to a full four-state model
in this study. The quantum chain analogy allows to use well-known
methods from statistical mechanics for the solution of the model, so that
we do not have to dwell on technical details here. For an extended presen-
tation of methods (with regard to the two-state model) using techniques
from rigorous mean field theory, we refer to refs. 26 and 27. The main focus
is instead on the discussion of the threshold behaviour and in particular the
increased complexity of the phase diagram due to the consideration of the
four-state nature of biological information and the refined schemes of
molecular mutation rates.

In the following section, we start with a presentation of the biological
foundations of our model. Only thereafter, we will introduce the quantum
chain model in Section 3. In Section 4, analytical and numerical results are
presented for a number of specific four-state models with permutation
invariant fitness landscapes. Also the properties of finite sequences and the
evolution dynamics will be studied. We close with a summary of our results
and a discussion of open problems in Section 5.

2. BIOLOGICAL FOUNDATIONS

Genetic information is coded in DNA (and RNA) molecules. These
are heteropolymers of four units (nucleotides) which differ in a specific
base. The essential aspect of a DNA sequence is captured in a string over
a four-letter alphabet

_ # V#V1_V2_ } } } _VN ; V i=[A, C, G, T ] (1)

where each letter represents a particular base: A and G for adenine and
guanine (the purins), C and T for cytosine and thymine (the pyrimidins).
In RNA sequences, T is replaced by U for uracil. We will therefore treat the
4N different sequences of a fixed, finite length N as our genotypes (which
may be thought of as coding for something, such as a virus or an enzyme).
Disregarding environmental effects, we may identify a collection of genotypes
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with a population of haploid ``individuals.'' Evolution then describes the
change of the population composition in time.

A standard model for the evolution of an infinite, asexually reproduc-
ing population under the basic forces of mutation and selection which
works in continuous time is given by the following system of non-linear
differential equations(5)

p* _(t)=(r_&r� (t)) p_(t)+:
_$

m__$ p_$(t) (2)

Here, p_(t) denotes the relative frequency of genotype _ at time t with corre-
sponding Malthusian fitness (replication rate minus death rate) r_ , and

r� (t)=:
_

r_p_(t) (3)

is the mean fitness of the population. It is the origin of the non-linearity
in (2). Finally, m__$ is the (time independent) rate at which _$ mutates
to _. This framework has originally been defined in classical population
genetics.(5) In the sequence space context, it has been introduced in ref. 1
and has been called the paramuse ( parallel mutation-selection) model, since
it assumes mutation and selection to act independently and in parallel at
each instant of time. The model ignores recombination and genetic drift
due to finite population size. Both assumptions can be considered as fairly
reasonable at least in the context of the evolution of viruses or bacteria
where populations can be huge and recombination is absent, or the
nucleotides are tightly linked. In the following subsections, the basic pro-
cesses of mutation and selection shall be described in some detail.

2.1. Mutation

We take mutation as a point process acting independently on all sites,
ignoring more complicated mechanisms, such as insertions or deletions.
Molecular mutation rates shall be chosen according to the following scheme,
known as the Kimura 3 ST model in molecular phylogeny:(17, 23) see Fig. 1.

Fig. 1. Molecular mutation scheme according to the Kimura 3 ST model.
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Within this general setup, a number of simpler models is contained,
which treat mutation at different levels of sophistication. In the simplest
approach, the mutation rates between all four nucleotides are assumed to
be equal (+1=+2=+3). This is the so-called Jukes�Cantor mutation scheme.
While this simple frame already seems to be sufficient for a number of
applications, measurements reveal that there are indeed pronounced dif-
ferences in the mutation rates that should be accounted for in more realistic
models. In particular, the transitions between the two purins (A, G) and the
two pyrimidins (C, T ) are much more frequent than the purin-pyrimidin
mutations which are called transversions. This may range up to relative dif-
ferences of +1r+3 &+2�2 in the nucleus and +1r+3&+2 �40 in mitochon-
drial DNA.(17) A mutation scheme with +2>+1=+3 is known as the
Kimura 2 parameter model. The full Kimura 3 ST scheme, finally, also
accounts for the small difference between +1 and +3 , such that +2>+1>+3 .

Implementing this mutation model into the evolution equation (2), we
obtain the following mutation rates between genotypes (i # [1, 2, 3])

m__$={
+ i , di (_, _$)=d__$=1

(4)&N :
i

+i , _=_$

0, d__$>1

Here

d1(_, _$)=*A $ C(_, _$)+*G $ T (_, _$)

d2(_, _$)=*A $ G(_, _$)+*C $ T (_, _$) (5)

d3(_, _$)=*A $ T (_, _$)+*C $ G(_, _$)

are restricted Hamming distances between _ and _$. In (5), *X $ Y (_, _$)
counts the positions at which X and Y are exchanged in _ and _$. Finally,

d__$=d1(_, _$)+d2(_, _$)+d3(_, _$) (6)

is the total Hamming distance. Note that the choice of the diagonal term
m__ in (4) just accounts for probability conservation (�_ p* _=0) in the
mutation part of the evolution equation (2).

2.2. Selection and Fitness Landscape

Whereas the mutational part of the dynamics is fairly well understood
at least on the microscopic (molecular) level, the relation of genotype and

319Four-State Quantum Chain as a Model of Sequence Evolution



fitness, which defines the respective selective success, is notoriously com-
plex. Following the standard notion in molecular evolution, we define the
fitness function (or fitness landscape)

f : _ [ r_ (7)

as a mapping from the configuration space V=[A, C, G, T ]N into the real
numbers, assigning a reproduction rate (Malthusian fitness value) r_ to
each genotype. Implicitly, the fitness function incorporates all the com-
plicated interactions between the sites. These interactions are typically long-
ranged (since RNA strands or proteins fold in three dimensions), highly
correlated, and give rise to rather rugged landscapes. Especially in the con-
text of RNA evolution, the construction and characterization of fitness
landscapes has motivated numerous studies, see, e.g., ref. 22 for a review.

Below we will show how the evolution equation (2), with an arbitrary
choice of the fitness function, can be adapted to the methods from statisti-
cal physics by a reformulation in a quantum chain framework. As an
application, we then present a study (including analytical and numerical
results) for specific examples from the class of permutation invariant fitness
functions. Here, due to equivalence of all sites, the fitness of a given
genotype is solely a function of its restricted Hamming distances from the
so called wildtype sequence with optimal fitness which we choose as the
reference genotype. This particularly simple class of fitness landscapes is
widely used, as a canonical first approximation, especially in multilocus
theory. Also in the context of sequence space evolution, fitness functions
of this type have been used in a number of studies on the two-state
model.(20, 16, 24, 2, 27) To implement the approach in our four-state model, we
fix an arbitrary sequence, denoted by _++ , as the wildtype. We will only
consider directional selection here towards a unique genotype with optimal
fitness. The fitness of any other sequence is then determined by the restricted
Hamming distances di relative to _++ . Permutation invariance with
respect to the position in the sequence thus leads to a drastic reduction of
dimensions. For the four-state model, the effective configuration space forms
a tetrahedron in 3d (see Fig. 2) and is conveniently represented in Cartesian
coordinates which we shall call (following ref. 2) the surplus components:

s1(_)=1&
2
N

(d1(_, _++)+d3(_, _++))

s2(_)=1&
2
N

(d2(_, _++)+d3(_, _++)) (8)

s3(_)=1&
2
N

(d1(_, _++)+d2(_, _++))
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Fig. 2. Permutation invariant configuration space of the four-state model in surplus coor-
dinates.

With this choice, any unstructured random sequence has coordinates si#0
(with probability 1 in the limit N � �). Any positive value of a surplus
component, on the other hand, signals a non-trivial overlap of the sequence
with the wildtype _++ . In particular, s1 measures the surplus of sites with
purins or pyrimidins as given in _++ over the purin-pyrimidin mutated
sites.

Within this frame, a natural class of permutation invariant fitness
functions is

f : _ [ r_=N :
3

i=1
_:isi (_)+

#i

2
s2

i (_)& (9)

which includes the following special cases

v Setting :i>0 and #i=0, we obtain the purely additive Fujiyama
landscape without genetic interactions. Here, every mutation relative to the
wildtype has a fixed deleterious effect, independent of any other mutation
that may be present in the sequence. The additive landscape is a canonical
zeroth-order approximation, ignoring any kind of genetic interactions. In
the context of sequence evolution, this fitness function has been discussed,
e.g., in refs. 20 and 2.

v With the choice :i� &#i>0, the model corresponds to a concave
quadratic fitness function (with directional selection) as it is frequently met
in multilocus theory. Due to the gene interactions, existing mutations tend
to aggravate further ones, which is called positive epistasis.

v For :i�0 and #i>0, we finally obtain a convex fitness function for
directional selection with long-range gene interactions and negative
epistasis (existing mutations tend to alleviate further ones). Since we want
to have _++ as unique wildtype sequence and a fitness function which is
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monotonous in the surplus components, we restrict f to the octant si�0
and (smoothly) truncate the fitness function by introduction of a step func-
tion 3(si ) whenever frequencies of genotypes with si<0 are non-zero:

f� : _ [ r_=N :
3

i=1
_(:isi (_)+

#i

2
s2

i (_)) 3(si(_))& (10)

The variables :i and #i may further be used to distinguish between the
effects of the different types of mutations (as defined in Fig. 1) on the
fitness. In this article, we will present explicit results for the two following
cases:

1. For the simplest choice, :1=:2=:3 and #1=#2=#3 , any muta-
tion away from the wildtype has the same effect. Together with the Jukes�
Cantor mutation scheme, symmetry here leads to equal values of the surplus
components in the mutation-selection equilibrium. The model may thus
also be thought of as a two-state model, where any site is only regarded as
occupied either with a wildtype or with a mutant nucleotide. In contrast to
the simple two-state model of ref. 2, however, there is an effectively asym-
metric mutation rate between wildtype and mutant in the case considered
here.

2. In a more refined model, we distinguish between transitions and
transversions. In the mutational part, this is done by applying the Kimura
2 parameter mutation scheme. In the fitness function, we take into account
that the deleterious effects of the transversions often dominate over those
of the transitions: :1>:2, 3 and�or #1>#2, 3 .

3. QUANTUM CHAIN MODEL

3.1. Symmetries

Since mutation is a random process that is independent of the fitness
values of the genotypes involved, the molecular mutation scheme conse-
quently makes no reference to fitness concepts like the wildtype. Biological
observables measurable from sequence data, such as the surplus com-
ponents (8), and also the fitness functions as defined in (9) or (10), on the
other hand, are defined relative to the wildtype sequence. In order to set up
these concepts in a common framework, it is convenient to reformulate
also the mutational part of the evolution equation in coordinates relative
to the wildtype. This may always be done due to certain symmetries
inherent in the mutation scheme of Fig. 1.
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The basic symmetry of the mutation scheme, if all three mutation rates
+1 , +2 , +3 are pairwise different, is C2_C2 (Klein's 4-group), generated by
two involutions. If we write the operations in standard permutation notation,
we can take as generators the transformations

\A C G T
C A T G + and \A C G T

G T A C + (11)

both being the product of two transpositions. This symmetry may now be
exploited for a redefinition of the mutation scheme in wildtype coordinates.
To this end, we fix, for every site of the wildtype sequence, the element of
the 4-group (in the above representation) with the letter of the wildtype
nucleotide in the first position (e.g., the string (T, G, C, A) for wildtype
nucleotide T ). An alternative representation of the configuration space in
wildtype coordinates as

_ # V \#V \
1 _V \

2 _ } } } _V \
N ; V \

i =[++, &+, +&, &&] (12)

is now given by the mapping, on each site, of the string of labels
(++, &+, +&, &&) to the symmetry element of 4-group defined above.
With this notation, the three types of mutations included in the Kimura
3 ST scheme simply switch the signs of the labels: \\ � �\ at rate +1 ,
\\ � \� at rate +2 , and \\ � �� at rate +3 .

Higher symmetries of the mutation model are obtained if certain
mutation rates are equal. For the Kimura 2 parameter scheme, +1=+3{+2 ,
the operation

A � C � G � T � A=\A C G T
C G T A + (13)

is also a symmetry and generates a cyclic group C4 . Together with the
previous C2_C2 , this generates a dihedral group, D4 , with 8 elements.
Finally, if +1=+2=+3 , we additionally get the simple transposition A W C
and have the full permutation group S4 as symmetry. Note that S4 , which
corresponds to the full tetrahedral group with 24 elements, is also the sym-
metry group of the configuration space of permutation invariant configura-
tions visualized in Fig. 2. The global symmetry (with the same transformation
acting at each site simultaneously) of our class of mutation-selection
models with fitness functions according to (9) is therefore always a sub-
group of S4 . In particular, the symmetric fitness model with :1=:2=:3 ,
#1=#2=#3 , and Jukes�Cantor mutation scheme possesses C3v symmetry,
or the full tetrahedral symmetry if the linear part in the fitness function
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vanishes (:i=0). The transition-transversion model finally, with :1>:2

=:3 , or #1>#2=#3 , and Kimura 2 parameter mutation has simple C2

symmetry, or D4 symmetry if :i=0. In the latter case, the combination of
#2=#3 with :1=:3 is necessary, not a misprint. Other combinations with
global D4 symmetry are (#1=#3 ; +2=+3) and (#1=#2 ; +1=+2).

3.2. Construction

With the above preparations, we may now follow the lines of refs. 2
and 27 where the two-state model is treated.

In a first step, we represent the 4N-dimensional vector space in which
we describe the genotype frequencies as the N-fold tensor product space
W=}N

j=1 Wj . Hereby, the configuration space V \ is canonically embedded
in W by the mapping of the elements of V \

i onto the basis vectors
[e++

j , e&+
j , e+&

j , e&&
j ] of Wj&R4. Since the nonlinear part in the dif-

ferential equations (2) only amounts to normalization of the frequencies,
a transformation to so-called absolute frequencies(25, 2)

z_(t)= p_(t) exp \:
_$

r_$ |
t

0
p_$({) d{+ (14)

then reduces the system to the linear equation

z* _(t)=(M+R) z_(t) (15)

where the mutation and reproduction matrices, M=(m__$) and R=
diag(r_), may now be conveniently represented in the frequency space W.
Defining

_(:, ;)
j :=\ }

j&1

14+� (_: �_ ;)�\ }
N& j

14+ (16)

where _:, : # [0, x, z], are the real Pauli matrices and _0#12 , we find

M= :
N

j=1

[+1_ (x, 0)
j ++2_ (0, x)

j ++3 _ (x, x)
j &(+1++2++3) 1] (17)

for the mutation matrix. The reproduction matrix R is, for a general fitness
landscape, an element of the algebra generated by _ (z, 0)

j and _ (0, z)
j ,

1� j�N

R=r01+ :
N

k, l=1

:
[ j1 } } } jk]

:
[ j1 } } } jl]

=[ j1 } } } jk], [ j1 } } } jl] `
k

m=1

_ (z, 0)
jm

`
l

n=1

_ (0, z)
jn

(18)
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where [ j1 } } } jk] is an ordered k-tupel in [1,..., N ]. Now, from a physical
point of view, H=M+R is (up to a global minus sign) the Hamiltonian
of two coupled Ising quantum chains in a tunable transverse magnetic field
(the mutation) and general spin-interactions within the chains.

Translated to our quantum chain model, the fitness function of the
permutation invariant landscape defined in (9) results in a (longitudinal)
magnetic field and a mean field spin-interaction. We find R=R:+R# ,
where

R:= :
N

j=1

[:1 _ (z, 0)
j +:2_ (0, z)

j +:3 _ (z, z)
j ] (19)

and

R#=
1

2N
:
N

j, k=1

[#1_ (z, 0)
j _ (z, 0)

k +#2_ (0, z)
j _ (0, z)

k +#3 _ (z, z)
j _ (z, z)

k ] (20)

Let us stress that, in contrast to most physical applications, the mean field
model is a much more natural approach in the biological context where
interactions are typically long-range. So, it is a legitimate model here, not
an inevitable approximation.

3.3. Biological and Physical Observables

In this subsection, we relate the quantities of biological interest, mean
and variance of the surplus components and the fitness, to the physical
observables. In what follows, we assume the occuring limits to exist.

Genotype Composition. According to (15), the Hamiltonian of
the quantum chain determines the time evolution of our population of
genotypes in an environment that does not constrain the population size.
For any genotype-independent regulation of the population size, the
relative genotype frequencies are found by statistical normalization. We
therefore define the vector of the genotype composition |p(t)) and the
equilibrium composition |0) as

|p(t))=
exp(tH) |p0)

(0| exp(tH) |p0)
; |0) := lim

t � �
|p(t)) (21)

where |p0) is the initial composition and 4&N |0) is the equidistribution
of genotypes. Note that the equilibrium composition of the genotype popula-
tion just corresponds to the ground state of the quantum chain on the
physical side (with a different ``biological'' normalization (0 | 0) =1).
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Fitness. The density of the mean fitness (or mean fitness per site) of
the population is given by the expression

w(t) :=N &1r� (t)=N &1(0| R |p(t)) (22)

Since

w := lim
t � �

w(t)=N &1(0| R |0) =N &1 (0| H |0)
(0 | 0)

(23)

the equilibrium mean fitness (per site) is just given by the (unique) largest
eigenvalue of H, corresponding to |0) . For an unconstrained population,
w also determines the growth rate in the long-time limit. In the physical
picture, (&w) is obviously just the ground state energy (per spin).

Using M |0)=0, we derive for the time evolution of the mean fitness

w* (t)=Vr(t)+N &1(0| [R, M] |p(t)) (24)

where Vr(t) is the variance of fitness (per site),

Vr(t)=
1
N

((0| R2 |p(t))&(0| R |p(t)) 2) (25)

In the absence of mutation, (24) is of course just a special case of Fisher's
``Fundamental Theorem of Natural Selection''(9) which states that the rate
of increase in fitness is equal to the genetic variance in fitness. For the
mutation-selection models considered here, the relation has the following
intuitive interpretation: The change in mean fitness is driven by two inde-
pendent forces. The first one stems from the change of genotype frequencies
due to selection and is proportional to the variance of fitness values present
in the population. Since variances are positive, it always tends to increase
fitness. The second term on the right hand side of (24) typically decreases
fitness. It measures the population mean of the change in fitness at time t
due to the action of mutation. In mutation-selection equilibrium, both
terms balance, and the entire residual variance is due to mutation.

Surplus. Another quantity that characterizes the genetic order of
the population, as it may be measured from sequence data, is the mean
surplus. We define, following and generalizing ref. 2,

ui (t)=:
_

si (_) p_(t); ui= lim
t � �

ui (t) (26)
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In particular,

*m(t) := 1
4 (3&(u1(t)+u2(t)+u3(t))) (27)

measures the mean number of mutations per site relative to the wildtype
while

*tr(t) := 1
2 (1&u1(t)) (28)

denotes the mean number of transversions alone. As a biological order
parameter, the mean surplus plays a similar role as the physical magnetiza-
tion. However, as already noted in ref. 3, both quantities are quite distinct
and in many cases not even easily related. In the language of the quantum
chain, the equilibrium mean surplus may be derived as

u1=
(0| � i _ (z, 0)

i |0)
N

; u2=
(0| � i _(0, z)

i |0)
N

; u3=
(0| � i _(z, z)

i |0)
N

(29)

whereas the three-component magnetization is defined as the ground state
expectation value

m1=
(0| � i _ (z, 0)

i |0)
N(0 | 0)

; m2=
(0| � i _ (0, z)

i |0)
N(0 | 0)

m3=
(0| � i _ (z, z)

i |0)
N(0 | 0)

(30)

As we will show below, magnetization and surplus can show rather dif-
ferent behaviour especially near phase transitions. The biological and
physical phase diagrams, however, coincide if phase transitions (or error
thresholds) are defined as nonanalyticity points of the ground state energy
(or mean fitness) w in the thermodynamic limit (cf. the discussion in Section 5).

4. RESULTS

4.1. Fujiyama Model

As in the two-letter case, (2) the quantum chain model decomposes into
noninteracting one-site Hamiltonians for the additive landscape. The mean
fitness and its variance are linear functions in the surplus components. In
particular, we obtain from (24)

Vr(t)=w* (t)+2((+1++3) :1u1(t)+(+2++3) :2u2(t)+(+1++2) :3u3(t))

(31)
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For Jukes�Cantor mutation, +1=+2=+3#+, this reduces to

Vr(t)=\4++
d
dt+ w(t) (32)

and Vr is proportional to the mean fitness in the mutation-selection equi-
librium. Exact results are easily found from the solution of the four-dimen-
sional eigenvalue problem of the one-site Hamiltonian. We only give the
expression for the mean fitness in the symmetric case, :1=:2=:3#: with
Jukes�Cantor mutation scheme (+1=+2=+3#+):

w(t)=
exp[2t(:++)] cosh[2tQ](:&2++2Q tanh[2tQ])&:&4+

1+exp[2t(:++)] cosh[2tQ]
(33)

where

Q=- +2+:3&:+ (34)

and the equidistribution of genotypes is chosen as starting configuration.
Means and variances of the fitness and the surplus in mutation-selec-

tion balance are shown in Fig. 6 below. A plot of the time evolution of
fitness is given in Fig. 8. There is clearly no phase transition (resp. no error
threshold behaviour) for the additive Fujiyama landscape, as expected in
view of the complete absence of interactions (resp. epistasis).

4.2. Quadratic Fitness Model: Equilibrium Results

In contrast to the additive case, no simple relation between surplus
and fitness is known in the case of the quadratic landscape as long as t
or N are kept finite. However, due to the permutation invariance of the
Hamiltonian, the individual fitness-surplus relation (9) is recovered in the
thermodynamic limit for the corresponding mean values of the equilibrium
population. We obtain in analogy to ref. 3:

w= lim
t � �

w(t)= :
3

i=1
\: iu i+

#i

2
u2

i + (35)

and, from (24), for the equilibrium variance of fitness per site

Vr= lim
t � �

Vr(t)=2(+1++3)(:1u1+#1u2
1)

+2(+2++3)(:2 u2+#2u2
2)+2(+1++2)(:3u3+#3u2

3) (36)
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The key to the solution in the thermodynamic limit is now the minimum
principle of the physical free energy which translates to a maximum principle
for the equilibrium mean fitness. Maximizing

(x| M+R |x)&w((x | x) &1) (37)

with respect to w and x, we obtain, taking permutation symmetry of x into
account, the following variational expression for w:

w(:, +, #)= sup
m1 , m2 , m3

_:1 m1+:2m2+:3m3+
#1

2
m2

1+
#2

2
m2

2+
#3

2
m2

3

+
+1

2
(- (1+m2)2&(m1+m3)2

+- (1&m2)2&(m1&m3)2&2)

+
+2

2
(- (1+m1)2&(m2+m3)2

+- (1&m1)2&(m2&m3)2&2)

+
+3

2
(- (1+m3)2&(m1+m2)2

+- (1&m3)2&(m1&m2)2&2)& (38)

where mi # [&1, 1] are the components of the physical magnetization. Let
us stress that, from the biological point of view, the translation to the
physical framework seems a necessary technical step since we do not know
of any variational principle for the biological model which works directly
in L1. We now take a closer look at two special cases.

Symmetric Fitness Model. For the symmetric wildtype-mutant
model with :i#:, #i## and Jukes�Cantor mutation rate +, all com-
ponents of the order parameters are equal, mi#m and ui#u, respectively.
Here, the variational expression (38) for w leads to the following self-con-
sistency condition for m:

m=
1
3 _1+

2(:+#m)&+

- (:+#m)2&+(:+#m)++2& (39)
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This is a quartic equation in m and can be solved using the standard
formulas. However, since the explicit solution is rather lengthly, we do not
include it here, but give a qualitative discussion instead.

Obviously, the relation has a unique real solution for any : and +
whenever # is negative. Like in the case of the two-state model, we thus
obtain no phase transition for positive epistasis. In the following, we there-
fore concentrate our discussion on positive # (or negative epistasis). Note
that, for calculations in the thermodynamic limit, always the fitness func-
tion f (9), and hence the reproduction matrix R# (20), can be used instead
of the truncated form f� (10), since the frequencies of genotypes with
negative surplus vanish. For :i#0, this is due to spontaneous breaking of
the extra C2_C2 symmetry of H=M+R# .

In contrast to the two-state model, where a phase transition in the
thermodynamic limit is only found for zero external field, it turns out that
the present model has phase transitions for a whole range of the linear
fitness parameter : when epistasis is negative: For :~ :=:�# in the interval

0�:~ <
1
3 \�

4
3

&1+&0.0515668 (40)

we find a first order phase transition of the system at

+~ :=
+
#

=+~ c=
2
3

+2:~ (41)

with a finite jump in the magnetization from m+ to m& where

m\= 1
3 (1\- 1&27:~ 2&18:~ ) (42)

From m we derive the mean fitness w using (38), from w we obtain the
surplus u via (35) and, finally, the variance of the fitness Vr=12+(:u+#u2).
Looking at the surplus u, we also find a phase transition at +~ =+~ c . As m,
it vanishes in the disordered phase for :=0. Note however that, since w is
continuous, due to the relation (35), also the surplus is continuous at a
phase transition. In ref. 3 it has been shown that these differences of the
biological and physical order parameters arise with the change from classi-
cal to quantum mechanical probabilities (resp. the change from L1 to L2)
in translating the biological model into the physical one. We remark that
a different, discontinuous behaviour of the biological order parameter at a
(physical) first order transition has been observed for the sharply peaked
landscape in Eigen's quasispecies model.(10) Mean fitness and its variance,
magnetization, and surplus for different values of : are shown below in
Fig. 3.
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Fig. 3. Mean fitness and its variance, surplus and magnetization in the symmetric fitness
model for various linear parts of the fitness function in the infinite sites limit.

Transition�Transversion Model. In our second example, we
wish to distinguish mutations between like and unlike nucleotides. In a first
step, we retain the symmetric fitness landscape #1=#2=#3## (for sim-
plicity with vanishing linear part :=0), but let the relative frequencies of
transitions and transversions differ by assuming the Kimura 2 Parameter
mutation scheme, +1=+3#+{+2 .

In the extended parameter space of the reduced mutation rates +~ =+�#;
+~ 2=+2 �#, we now obtain a phase diagram with three distinct phases (see
Fig. 4).

v For +~ and +~ 2 sufficiently small, all three surplus components are
positive, indicating genetic order with respect to the entire 4-letter alphabet
of the nucleotides: ACGT phase.

v If we increase the mutation rate +~ 2 for low +~ , the system crosses over
to a phase which does no longer distinguish between the different kinds of
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Fig. 4. Phase diagram of the transition�transversion model with symmetric fitness landscape
and Kimura 2 parameter mutation scheme. Solid and dotted lines correspond to first and
second order phase transitions respectively. The dashed line indicates the Jukes�Cantor muta-
tion scheme.

purins (A, G) and pyrimidins (C, T ), but is still ordered with respect to
transversions. This is the limiting case described by the two-state model.
We call this the PP phase.

v For higher mutation rates +~ , +~ 2 , we finally enter a completely disor-
dered phase with vanishing fitness and surplus.

In a second step, we now also let the mutation effects of transitions and
transversions differ and assume a fitness landscape with #2=#3##, but
#1{# in general. The changes in the phase diagram for increasing #~ 1=#1 �#
are shown in Fig. 5. The phase transitions between the three phases may
be first or second order. In general, we obtain the following phase space
structure:

v Phase transitions between the disordered and PP phase are second
order and located on the line +~ =#~ 1 �2. This phase transition corresponds
to the one also seen in the two-state model.(2)

v The phase transition line between the ACGT and PP phases in
general changes from first to second order with increasing mutation rate +~ 2

(see Figs. 4, 5). For the second order transitions we derive, on expanding
(38) to lowest order in m2=m3 ,

+=
#1

#1+2#
- (#1++2)(2#&+2) (43)
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Fig. 5. Phase diagrams for anisotropic fitness landscapes #1>#2=#3## and Kimura 2
parameter mutation scheme. Solid and dotted lines correspond to first and second order phase
transitions, respectively.

Numerically, we find that the first order transitions are located on a
straight line up to +~ =#~ 1 �2 where the PP phase changes into the disordered
phase. The +~ 2-interval of first-order transitions decreases for increasing #~ 1 .
For #~ 1 -

t
8.45, all phase transitions between the ACGT and PP phases are

second order.

v Finally, for #~ 1�4, there are direct first order phase transitions
between the ACGT phase and the disordered phase (for +~ 2 sufficiently
small). For higher values of #~ 1 , these two phases are separated by the PP
phase.

As for the symmetric fitness function discussed above, there are no
compact analytic expressions for the fitness or the surplus in the ACGT
phase. In the PP phase, however, the following values for the mean fitness
and the non-zero components of the mean surplus and the magnetization
are found:

w=
#1

2 \1&
2+
#1 +

2

; u1=1&
2+
#1

; m1=�1&\2+
#1 +

2

(44)

The variance in fitness per site, finally, is proportional to the mean fitness
in the PP phase: Vr=8+w. Note that all these expressions are independent
of the transition rate +2 and directly comparable to the results of the two-
state model(2, 27) by identifying [++, +&] with ``+'' and [&+, &&]
with ``&.''

4.3. Quadratic Fitness Model: Finite Sequence Length

For the Fujiyama model with independent sites, all the quantities
calculated here, means and variances per site in infinite populations, are
independent of the assumed length N of the sequences. This is no longer
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the case for models including epistasis. In this subsection, we therefore
present a quick numerical investigation of the symmetric fitness model for
finite system sizes and compare the results with those in the thermo-
dynamic limit. Since the frequencies of genotypes with negative values of
the surplus no longer vanish for finite sequences, we use the truncated
fitness function (10), with #i##>0 and :i=0 for our calculations.

All results are obtained by direct numerical solution of the eigenvalue
problem in the [(N+1)(N+2)(N+3)�6]-dimensional vector space of per-
mutation invariant population vectors. Numerically precise calculations
have been performed up to N=60 (39711-dim.), the results are shown in
Fig. 6. It is seen that the mean surplus and the mean and the variance of
the fitness rapidly approach the limiting curves and behave qualitatively
different from the Fujiyama model even for very small system sizes. We
also show the finite-size behaviour of the variance of the surplus Vs . Since
this quantity vanishes as 1�N, it is not obtainable from the leading order
terms in the thermodynamic limit. In our finite size calculations, we rescale

Fig. 6. Equilibrium behavior of fitness and surplus of the symmetric fitness model with finite
sequence length. Results for the Fujiyama model with scaling :=#�2 are also shown.
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Vs with the sequence length to obtain comparable results. Whereas Vs is
monotonously increasing for the additive model (where NVs=1&u2), it
runs through a maximum for quadratic fitness. Note that this maximum, in
contrast to the variance of fitness, is located directly at the error threshold.
The behaviour is qualitatively similar to the two-state model.(21)

Since there has been some discussion recently on the correct scaling of
fitness values and mutation rates with the length of the sequence (cf. refs.
10 and 4), let us finally remark that the finite size results in this and the
next section show that our choice, keeping fitness and mutation rate per
site fixed, is adequate for all quantities considered here.

4.4. Quadratic Fitness Model: Time Evolution

Originally, the error threshold has been defined as an equilibrium
phenomenon (cf. refs. 8 and 4): For special forms of the fitness landscape,
there is a finite critical value +c of the mutation rate beyond which genetic
order is no longer maintained by selection. For the four-state model with
quadratic fitness, this situation has been discussed above. However, for a
suitable fitness function, the threshold is not necessarily connected with
high mutation rates. In this subsection, we consider the relaxation of a
non-equilibrium population to mutation-selection balance. It turns out
that, depending on the starting configuration, an even stronger threshold
effect may be observed in the time evolution of the fitness and the surplus
for all mutation rates below the critical equilibrium value.

Zero-Mutation Limit of the Transition�Transversion Model.
The essence of the threshold phenomenon in the time evolution is already
contained in the selection dynamics alone. In a first step, we therefore dis-
regard mutation altogether by working in the zero-mutation limit. Obviously,
we then deal with a classical meanfield model on the physical side. As our
starting configuration, we choose the completely unstructured population
with an equidistribution of genotypes |p0)=4&N |0) . In this particular
situation, some progress is possible also analytically. Noting that

(C� )(t)=
(0| C� exp(tR) |0)
(0| exp(tR) |0)

=
tr(C� exp(tR))
tr(exp(tR))

(45)

for any element C� of the algebra generated by [_ (z, 0)
i , _ (0, z)

i ], the biological
and physical pictures coincide in this case. Using the fitness function of the
transition�transversion model with #2=#3##>0, we obtain the following
implicit equations for the time evolution of the surplus components:
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u=
sinh(2#tu)

cosh(2#tu)+exp[&2#1t(2u coth (2#tu)&1)]
(46)

u1=
cosh[#tQ(u1)]&exp(&2#1 tu1)
cosh[#tQ(u1)]+exp(&2#1 tu1)

(47)

where

Q(u1)=- (1+u1)2&exp(4#1 tu1)(1&u1)2 (48)

The resulting dynamical phase diagram is shown in Fig. 7. As in the equi-
librium situation, there are three phases. Depending on the ratio #~ 1=#1 �#,
the system directly crosses to an ordered phase after a sharply defined wait-
ing time tc , or performs two consecutive transitions, entering the PP phase
in the first one.

As in the equilibrium phase diagram, the dynamical transitions may be
of first or second order.

v Second order transitions are located at t~ =#t=1 for #~ �1�4 and at
t~ =1�#~ 1 for the transition from the disordered phase to the PP phase. The
transition from the PP phase to the ACGT phase is second order above #~ 1
r1.9009 and implicitly given through 2t~ c=1+exp[2#~ 1(t~ c&1)]. A similar
second order transition (with a one-component order parameter) has also
been observed in the two-state model.(26, 27)

v In an interval around the symmetry point #1=#, the system pos-
sesses a first order transition (in the sense that there is a finite jump in the
magnetization). Note that, in contrast to the equilibrium case, also the

Fig. 7. Dynamical phase diagram of the transition�transversion model for vanishing muta-
tion starting from the equidistribution. (Solid: first order; dashed: second order transition).
Right: Time evolution of the surplus components for #~ 1=2.
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Fig. 8. Time evolution of the equidistribution of genotypes in the zero mutation-limit of the
symmetric fitness model for different sequence lengths.

surplus and even the mean fitness are discontinuous on this line, giving rise
to a rather pronounced threshold effect in the evolution dynamics (cf. the
solid line in Fig. 8 for #~ =1).

As for the equilibrium values, we also consider the effect of finite sequence
lengths on the time evolution. Again, calculations are performed by direct
diagonalization of the symmetric fitness model (#~ =1). Figure 8 shows how
the jump discontinuity in the mean fitness (internal energy) and the delta
function singularity in the variance of the fitness (specific heat) are
approached by the finite systems. A threshold phenomenon is absent in the
time evolution of the Fujiyama model which is also shown in Fig. 8.

Finite Mutation Rates and Different Starting Configurations.
In a last step, we now discuss the influence of the mutation rate and the
starting configuration on the evolution dynamics. Consider first the time
evolution of the equilibrium distribution of genotypes 4&N |0). Although
no analytical results are available here, we may give the following intuitive
argument that there is a phase transition at finite t=tc for any mutation
rate below the critical equilibrium mutation rate +c : Since mutation alone
tries to keep the population in the equilibrium distribution, the evolution
dynamics will be slowed down by mutation for small t. In particular, mean
fitness and surplus will remain zero on a finite interval at least up to the
threshold value of the corresponding model with vanishing mutation. On
the other hand, the limiting values of w and u are finite for +<+c , giving
rise to a nonanalytical point of w(t) and u(t) at some finite t=tc . As shown
in the upper graph of Fig. 9, this behaviour is clearly visible in numerical
results for finite sequence sizes.
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Fig. 9. Time evolution of the variance of the fitness in the symmetric fitness model with
sequence length N=60. Results are shown for varying mutation rates and two different start-
ing configurations.

In order to contrast the time evolution of the unstructured population
with an equidistribution of genotypes as starting configuration, we have
also performed calculations for the opposite case of a population with
initially homogeneous phenotypes. Here, at t=0, any ``individual'' in the
population has the same value si=0 for the three surplus components. The
result (for finite sequence length N=60) is shown in the lower viewgraph
of Fig. 9. As for the equidistribution of genotypes, there is a clear threshold
effect in the time evolution for any finite value 0<+<uc of the mutation
rate. The transition appears to be particularly sharp for small mutation
rates. In contrast to the unstructured case, the critical waiting time tc for
the transition is no longer monotonously increasing with the mutation rate +,
but is separated in two regimes: For mutation rates near the equilibrium
threshold value +c , the situation is similar to the unstructured case: Here,
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single mutants with higher fitness appear in the population after a short
while. Due to the continuing mutation pressure, however, a certain time is
needed for these fitter individuals to grow to a finite proportion and to
dominate the mean values in the infinite population. For small +, on the
other hand, the critical waiting time tc is dominated by the time needed for
mutation to explore the configuration space and to generate individuals
with higher fitness at a sufficient rate.

5. DISCUSSION

When in ref. 2 a class of models for sequence space evolution was
introduced, using the framework of Ising quantum chains, the calculations
started with four major simplifications of the biological situation. These are
the consideration of a two-state model, the assumption of an infinite
sequence length, the use of simplistic fitness landscapes, and the restriction
on infinite population sizes. In this paper, we have looked at the first two
of these simplifying assumptions. Finally, an extended discussion of the
evolution dynamics of these models has also been presented. In the follow-
ing paragraphs, we give a summary of our findings and an outlook on the
remaining open problems.

Two-State Versus Four-State Models. The main concern of
this contribution is the generalization of the modelling framework, intro-
duced in ref. 2, to four states (corresponding to the four nucleotides) on
each site. The generalization presented makes use of the C2_C2 symmetry
inherent in the Kimura 3 ST mutation scheme. On the ``physical side'' this
leads to a model of two coupled Ising quantum chains (rather than to a
four-state Potts model). Compared with the two-state model, the extension
can be thought of as consisting of two steps. In a first step, we represent
the four states on each site by the spin values of two spins in decoupled
chains. Note that already in this simplified model three phases occur in the
phase diagram since the transition lines of the two decoupled chains will
not in general coincide. The second step consists of the introduction of a
more realistic mutation scheme which also changes the configuration space
topology and the corresponding use of a refined fitness landscape. Both
these extensions lead to a coupling of the chains, and an even richer phase
space structure is found, including first-order transitions. As may be seen
from the introduction of a small linear field term into the fitness function
in Subsection 4.2, this change of the transition to first order leads to an
increased robustness of the threshold phenomena with respect to sym-
metry-breaking perturbations.

339Four-State Quantum Chain as a Model of Sequence Evolution



Finite Sequence Length. Typical sequence lengths of enzymes or
viruses are of the order 103�104. While these numbers are certainly far off
the typical sizes of macroscopic systems in physics, they are, in principle,
large enough to successfully suppress 1�N-corrections. However, especially
models with simple fitness landscapes describe��at best��the evolution
dynamics in a very restricted configuration space of particularly ``impor-
tant'' sites, disregarding neutral or altogether lethal mutations. In view
of this fact, consideration of finite sequence lengths is indispensible and
calculations in the thermodynamic limit even seem to be questionable at
first sight. In order to clarify the usefulness of infinite-size methods in this
context, we performed a number of numerical calculations for finite
sequence lengths. The results are quite encouraging. As shown in Subsec-
tion 4.3, the characteristic properties of the thermodynamic limit are well
visible even for tiny sequences sizes, such as N=10, and the approximation
is already quantitatively reasonable for sequences of length 60.

The Fitness Landscape. The construction of a tractable fitness
landscape which nevertheless comprises the relevant biology is certainly the
major task for all these models. In this contribution, in order to obtain at
least some analytical results, we have chosen a fitness function from the
smooth end of the landscape zoo. Due to its permutation invariance, the
quadratic fitness function effectively disregards any local variance in the
interaction between sites, but only considers the average epistatic effect. As
such, it is in many respects certainly no more than a toy-model for evolu-
tion. However, the assumption of permutation invariance of the sites is
quite common in evolutionary biology and comprises a large number of
standard models for evolution, such as the quadratic optimum model or
Eigen's original sharply peaked landscape. The results show that the essen-
tial structure responsible for characteristic effects such as the error
threshold is already contained in this simplified framework and may also
serve as a reference for future work on fitness functions with increased
ruggedness, such as the NK-landscape hierarchy.(13) Here, we expect the
results for the quadratic fitness model to be qualitatively stable at least
under certain forms of mild ruggedness, such as the introduction of site-
randomness in the fields and interactions.(6) Pronounced changes, on the
other hand, should be expected when spin-glass effects come into play.

Finite Population Size. In going from the deterministic limit to
the evolution of finite populations, the ordinary differential equation (2)
has to be replaced by the master equation of a stochastic process which is
no longer covered by the theoretical framework presented in this article.
Due to the complexity of the stochastic equations, analytical results seem
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to be out of reach at present for all but the simplest selection schemes.
Monte-Carlo simulations, however, should be possible and could consider-
ably add to theoretical insight here.

Although the general picture of the deterministic case should persist at
least for sufficiently large populations, the study of finite population effects
is certainly of importance. For related models, such as the quasispecies
model with the single peaked landscape, it is has been found(19) that the
deterministic results can be interpreted as the time averages of the
stochastic process for mutation rates outside a certain interval around an
error transition. Directly at the threshold, however, large fluctuations and
a jump in the long-time averages appear in the stochastic system at a criti-
cal mutation rate which seems to be lower by an amount roughly propor-
tional to 1�- N in comparison with the deterministic case. Mainly because
of these expected finite population effects we have restricted discussions in
this article entirely to the phase space structure of the models and the order
of the phase transitions. Any further details of the transitions, even critical
exponents, will presumably never be visible in real biological systems and
thus seem to be of limited relevance in this context.

Let us finally remark that, although biological populations are cer-
tainly finite, the consideration of the infinite population limit is not (only)
a technical necessity, but also of direct importance for the study of the
error threshold. That is so because this effect, in distinction to the
phenomenon of Muller's ratchet, is by definition not due to genetic drift,
but solely due to the form of the fitness function. It has thus always to be
shown that the threshold effect persists even for infinitely large population
sizes.

Error Threshold Behavior. Since there are more than one and
sometimes conflicting definitions of the error threshold in literature (cf. the
discussion in ref. 4), let us start this paragraph with a few clarifying
remarks. In this article, following ref. 4, we use the notion of the error
threshold as equivalent to phase transitions. As such, a clear-cut mathe-
matical definition (as non-analytical points in the mean fitness) is possible
only in the infinite sites (or thermodynamic) limit. However, since the ther-
modynamic limit can be considered as an excellent approximation already
for rather small systems, the infinite system property gives a valid explana-
tion for prominent features which are observable for finite sequences as
well. In our study, we have always considered sequences of a fixed length
and have treated the mutation rate per site as the variable driving the
transition. In comparing systems of different length, we have scaled the
variables such that a well-defined limit is approached as N � �. In par-
ticular, the ``critical'' mutation rate per site in a finite system quickly
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converges to the limiting value +~ c . Originally, the threshold has been viewed
as a limitating factor on the sequence length.(7) This, however, should not
be confusing: We switch to this latter picture simply by letting the reduced
mutation rate depend linearly on the sequence length, +~ tN, and obtain a
critical length Nct+~ c (for sufficiently large sequences).

Our results on the error threshold phenomenon fit previous ones for
the two-state case and related models in that negative epistasis is needed to
observe a transition (cf. refs. 28 and 4). Contrary to the two-state case, the
threshold corresponds to a first-order transition for certain parameter
ranges and persists for a sufficiently small linear part in the fitness function.
Both, the equilibrium and the dynamical phase diagram of the transition-
transversion model (with :i=0), possess two ordered phases characterized
by non-zero values of one or all three components of the surplus order-
parameter and the disordered phase with zero surplus where selection
ceases to operate. The threshold effect appears to be especially sharp in the
evolution dynamics, where a jump in the mean surplus and fitness and a
delta singularity in the variance of fitness occurs.

Besides the threshold effect, however, other properties of mutation-
selection models may be studied within the framework presented. After
all, exclusive concentration on phase transitions is perhaps too much a
physicist's point of view on these systems. The relations between surplus,
mutation rate and the variance of fitness (24), (36), for example, are valid
for the entire time evolution and arbitrary mutation rates. Depending on
the fitness function applied, they may give rise to characteristic features
also far off the transition point. This is particularly explicit for the equi-
librium variance of fitness which runs through a pronounced maximum for
fitness functions with negative epistasis at a mutation rate much smaller
than the threshold value.
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